Incorporation of a differential refractometer into a laser light-scattering spectrometer
نویسندگان
چکیده
A new differential refractometer, which mainly consists of a laser light source, a position-sensitive detector, and a temperature-controlled refractometer cuvette has recently been developed. In comparison with a conventional differential refractometer, it has a different optical design so that the effect of laser beam drift can be greatly reduced. In our design, a very small pinhole is illuminated by the laser light and the illuminated pinhole is imaged to the detector by a lens located in the middle between the detector and the pinhole in a 2f-2f configuration. The cuvette is placed just before the lens. The pinhole, the cuvette, the lens, and the detector are mounted on a small optical rail. The refractometer can be easily incorporated into any laser light-scattering spectrometer, in which the laser, the thermostat, and the computer are shared. This not only reduces the total cost (at least ten times cheaper than a commercial differential refractometer), but also enables us to measure the specific refractive index increment and the scattered light intensity under the identical experimental conditions, such as wavelength and temperature. This novel refractometer has a wide linear detection range ( f 0.035 RI units) with a resolution of 10e6 RI units, which is sufficient for determining the specific refractive index increment of most polymer solutions.
منابع مشابه
Interaction of Laser Beam and Gold Nanoparticles, Study of Scattering Intensity and the Effective Parameters
In this paper, the optical properties of gold nanoparticles investigated. For this purpose the scattering intensity of a laser beam incident on gold nanoparticles has been studied using Mie theory and their respective curves versus different parameters such as scattering angle, wavelength of the laser beam and the size of gold nanoparticles are plotted. Investigating and comparison of the depi...
متن کاملIn vivo measurement of mid-infrared light scattering from human skin
Two mid-infrared light sources, a broadband source from a Fourier Transform Infrared Spectrometer (FTIR) and a pulsed Quantum Cascade (QC) Laser, are used to measure angle-resolved backscattering in vivo from human skin across a broad spectral range. Scattering profiles measured using the FTIR suggest limited penetration of the light into the skin, with most of the light interacting with the st...
متن کاملEngineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)
Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...
متن کاملDetectors for High-performance Liquid Chromatography of Lipids with Special Reference to Evaporative Light-scattering Detectio
A. Introduction B. Optical and Spectrophotometric Detectors 1. Differential refractometry 2. Ultraviolet spectrophotometry 3. Fluorescence detection 4. Infrared spectrophotometric detectors 5. Spectrophotometric detection with post-column chemical reaction C. Some Miscellaneous Detection Systems 1. The mass spectrometer as an HPLC detector 2. Radioactivity detectors 3. Density, electrochemical ...
متن کاملDesign, Construction and Calibration of a Laser Ionization Time-of-Flight Mass Spectrometer
A time-of-flight mass spectrometer (TOF-MS) developed in our laboratory at Isfahan University of Technology is described here. The TOF-MS instrument uses laser as the ionization source which provides an opportunity to investigate the ions formed in laser ablation or desorption. The TOF-MS has an ionization chamber containing an accelerator and an ion lens to focus the ions into a one meter line...
متن کامل